

 1

Final Report
TNW2009-16

Research Project Agreement No. 61- 7169

Self Calibrating Monocular Camera Measurement
of Traffic Parameters

Daniel .J. Dailey

Department of Electrical Engineering
University of Washington

Seattle, Washington 98195-2500

A report prepared for

Transportation Northwest (TransNow)
University of Washington

135 More Hall, Box 352700
Seattle, Washington 98195-2700

in cooperation with

U.S. Department of Transportation
Federal Highway Administration

December 2009

 2

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO.

TNW2009-16

2. GOVERNMENT ACCESSION NO.

3. RECIPIENT’S CATALOG NO.

4. TITLE AND SUBTITLE

Self Calibrating Monocular Camera Measurement of Traffic
Parameters

5.REPORT DATE

December 2009
6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S)

Daniel Dailey

8. PERFORMING ORGANIZATION REPORT NO.

TNW2009-16
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Transportation Northwest Regional Center X (TransNow)
Box 352700, 129 More Hall
University of Washington
Seattle, WA 98195-2700

10. WORK UNIT NO.

11. CONTRACT OR GRANT NO.

DTRT07-G-0010
12. SPONSORING AGENCY NAME AND ADDRESS

United States Department of Transportation
Office of the Secretary of Transportation
1200 New Jersey Ave, SE
Washington, D.C. 20590

13. TYPE OF REPORT AND PERIOD COVERED

Final Research Report
14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

ABSTRACT

This proposed project will extend the work of previous projects that have developed algorithms and software
to measure traffic speed under adverse conditions using un-calibrated cameras. The present implementation
uses the WSDOT CCTV cameras mounted along freeway segments and has an interface for automated camera
calibration and traffic speed and speed variance measuring and recording. The calibration algorithm is
implemented as an operator in a pipelined architecture using the Java Advanced Imaging package. The
algorithm uses features found on the freeway, such as fog lines and lane markers, to calibrate the camera.
Arterials have different features, such as turn arrows and stop bars, that can be used for calibration. This effort
will develop algorithms that calibrates cameras based on common features found on arterials and will
implement the algorithm as a Java operator so that it extends the capabilities of the software to arterials. The
result will be a portable system that can function on both freeways and arterials with only limited infrastructure
investment. The utility of this project is to leverage existing software to make traffic parameter measurements
on arterials where there are no loops, and to calibrate traffic measurement and management devices using these
measurements.

17. KEY WORDS

video image, detection, traffic parameters, camera

18. DISTRIBUTION STATEMENT

19. SECURITY CLASSIF. (of this report)

None

20. SECURITY CLASSIF. (of this page)

None

21. NO. OF PAGES

28

22. PRICE

 3

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts

and accuracy of the data presented herein. The contents do not necessarily reflect the views

or policies of the Washington State Transportation Commission, Department of

Transportation, or Federal Highway Administration. This report does not constitute a

standard, specification, or regulation.

 4

TABLE OF CONTENTS

Disclaimer 3

Introduction 5

Background 6

A. Software 11

B. Implementation 14

Conclusions, Recommendations and Future Work 22

References 23

 5

CHAPTER 1

Introduction

This project extends the work of previous projects that have developed algorithms and

software to measure traffic speed under adverse conditions using un-calibrated cameras. [1,2]

The past implementation uses the WSDOT CCTV cameras mounted along freeway segments

and has an interface for automated camera calibration and traffic speed and speed variance

measuring and recording. The past effort relied on the availability of the ITS Backbone to

both provide a means to select cameras of interest and to transfer the digitized images from

WSDOT Northwest region Traffic Management System Center (TSMC). The Backbone

infrastructure is no longer in place due to financial considerations. A significant portion of

the effort in this project is to make the previously developed software functional in the

present environment for capturing video data.

The calibration algorithm is implemented as an operator in a pipelined architecture using the

Java Advanced Imaging package. The algorithm uses features found on the freeway, such as

fog lines and lane markers, to calibrate the camera. Arterials have different features, such as

turn arrows, lane markers, crosswalks and stop bars, that can be used for calibration. This

effort developed algorithms that calibrates cameras based on common features found on

arterials and implemented the algorithm as a Java operator so that it extends the capabilities

of the software to arterials. The result is a portable system that can function on both freeways

and arterials with only limited infrastructure investment. The utility of this project is to

leverage existing software to make traffic parameter measurements on arterials where there

are no loops, and to calibrate traffic measurement and management devices using these

measurements.

 6

CHAPTER 2

Background

The presently installed set of cameras represents a large financial investment to all DOTs

nationally. This research allows quantitative speed to be estimated from the existing camera

pool and eliminates the need for additional, specially calibrated cameras and associated

infrastructure. Furthermore, as cameras are deployed on arterial routes, this technology will

allow quantitative traffic speed measurements to be estimated from those cameras; such

measurements would otherwise be available only by installing additional, expensive traffic

sensors (e.g., loops or radar).

Past projects have designed algorithms and constructed software that can use un-calibrated

cameras to measure speed on freeways. Past projects have also built the Backbone network

infrastructure that allows WSDOT cameras, both freeway and arterial, to be available for use

as quantitative sensors. Innovative image processing techniques created, published and used

in the prototype application include (1) the use of perspective straightening for image

linearization [5], (2) an autocorrelation technique for lane stripe detection and estimation of

the linear pixel/foot scale factor [7], and (3) a cross correlation technique used to estimate

mean traffic speeds and direction of flow[3,6]. The approach is implemented for

demonstration in prototype software. An example of the user interface is shown in Figure 1.

The steps necessary to estimate traffic speed from video images are shown in Figure 2 and

consist of (1) selecting a camera, (2) acquiring images, (3) calibrating the selected camera in

the present position, if possible, and, if the camera calibration is successful, (4) making speed

estimates of oncoming and receding traffic. Each of these steps is realized in a pipeline-like

operation; in fact, the application is implemented by extending the Java Advanced Imaging

package from SUN to create a pipeline member for each of the steps.

The previous projects were undertaken more than three years ago and the Backbone network

infrastructure has changed. In addition, the software components build in the past efforts

needs to be updated to compile and operate in the present operating and Java systems

environment.

 7

The present project devotes a significant portion of the approximately two months of

available effort to modifying the software to: (1) be functional (compile and operate) in the

current Java and Windows environments, (2) obtain images from the arterial cameras using

the Axis encoding device in the STAR lab, (3) identify useful arterial locations to develop

algorithms for calibration, (4) developing additional software functionality to record camera

data from the intersections using the Axis encoder

To automatically calibrate the camera, the image needs to be “straightened” or warped, so

that pixels have the same effective size throughout, and scaled, so that the size of each pixel

can be expressed in feet. The straightening operation involves finding a vanishing point in

the image, and the scaling operation requires finding lane striping. The three phases for

implementing calibration are (1) highway line detection, see Figure 3, (2) computation of the

Figure 1 Camera calibration and speed measurement application.

 8

vanishing point and image straightening transformation, see Figure 4, and (3) computation of

the image-to-highway scale factor (feet/pixel). The algorithm is implemented as a series of

operations that are shown in Figure 5. Once the camera has been calibrated, a cross

correlation between sequential images is used to estimate traffic speed. This cross-correlation

method is robust in the face of high density traffic with much occlusion of vehicles, a

situation in which other camera-based algorithms fail. This method has analytical bounds on

the accuracy of the speed measurement as shown in [1,7] that guarantee the performance of

the speed estimation algorithm.

Figure 3 Line and vanishing point identification

C am era

Se lec tio n
Speed

Es tim ation
Im age

Acqu is itio n
C am era

C alib ratio n

Figure 2 Steps to perform speed estimation with an un-calibrated camera

 9

Figure 4 Image Straightening

Backg ro und
C o ns tru c tio n

“H o ugh”
T rans fo rm *

Van ish ing
Po in t

Pe rspec tive
W arp ing Auto co rre la tio n C alib ratio n

Edge
D etec tio n

R em o ve
Artifac ts and

Thresho ld

Figure 5 Steps used in calibration process.

Figure 6 Obtaining scaling factor from roadway.

 10

This project expands the calibration algorithm described in [1] to be used on arterials.

Arterial data needs differ from those on the freeway. If the camera is mounted mid-block, it

may be used as a speed senor just as on the freeway. However, many cameras are mounted at

or near intersections and need to measure several parameters, such as queue length, vehicle

classification, vehicle lengths, turning movements, occupancy and speed, while being able to

tilt pan and zoom. These requirements lead to a need to expand the number of roadway

features for calibration.

The arterial fog and centerlines are widely available in imagery from regional arterials. These

can be used to identify a vanishing point, which in turn allows for warping/straightening of

the image, as in Figure 4. This straightened image allows for features, such as vehicles, to be

identified in a coordinate system that has a linear relationship with the ground plane, e.g.

rectangular cars are rectangular in the image and of equal size throughout the image. As a

result, measures that primarily use ratios such as occupancy, number of vehicles in a queue,

turning movements, and vehicle classification can be done accurately using the straightened

images. Algorithms to perform these measurements and implementation of those algorithms

in the pipeline are shown in Figure 2. . These measurements can be enhanced to provide

accurate world length measurements if the image can be completely calibrated.

In Figure 6, the lane stripe period found in the straightened image provides a scale factor for

the calibration on the freeway. This was chosen because it is a feature nearly always found

on regional freeways. This project will expand the automated calibration to include features

such as turn arrows, crosswalk lines, and transit symbols for scaling. These common features

will allow complete scaling of the straightened image. Once the image is completely scaled

and straightened features in the image can be measured with a known, and mathematically

provable, accuracy. Queue lengths measure in feet, absolute speed and vehicle lengths in feet

can accurately be measured.

 11

CHAPTER 3

PROJECT ACTIVITIES

A. Software

The past projects developed a distributed Java application for traffic video image acquisition,

camera calibration and speed estimation. There was a server program “Capture'', running on

a computer placed on the WSDOT Traffic Management System Center’s (TSMC)local

network, with access to the CCTV camera video switch. This program both controls the

switch, as well as grabbing and serving video image sequences over the ITS Backbone. A

client application program “AutoCalSpd'', on the UW-ITS local network, requests and

processes the image sequences. Communication between server and client is through a

controlled proxy program which prevents unauthorized users from accessing the server. The

AutoCalSpd' had information on the relationship between physical camera locations and the

port on the TMSC and automated the camera selection over the ITS Backbone. Figure 7

shows the previous data flow to access traffic video.

Figure 7 Previous network implementation.

Due to the replacement of the WSDOT Traffic Management System at WSDOT’s Northwest

Region the structure and methodology of accessing the cameras was changed. The ITS

Backbone was turned off and a dedicated fiber from WSDOT to StarLab at the UW was put

into place as shown in Figure 8. In the new configuration the camera selection is done

asynchronously outside the AutoCalSpd application and the images are captured and

digitized by the Axis encoder. This change in structure requires the code that acquires

images to be completely rewritten to be able to obtain, accept and process images from the

Axis encoder. This rewriting of the code consumed a significant portion of the project, but.

 12

Figure 8 Present network setup

has been accomplished. The configuration file for the application can now have the

command “source : axis” so that the image processing application can use images from the

Axis encoder over a tcp-ip network. An example of the configuration file can be seen in

Figure 9. This software change will allow the AutoCalSpd application to accept data from

any NTSC source that is plugged into an Axis encoder and provide a standardized published

interface to access data from any agency that uses Axis encoders.

 13

Figure 9 Configuration file.

#SERVERHOST : VIDEO

SERVERHOST : LORRY

#IF USING AN SSH TUNNEL

#SERVERHOST :128.95.204.131

#SERVERPORT : 80

SERVERPORT : 9006

#CAMLIST : CAMLIST

#CAMLIST : CAMERA.REP

CAMERAS : CAMERAS_9-13-2006.TSV

CONTROLS : CONTROL_PARMS.CSV

MAXNUMBIGFRAMES : 20

FRAMES SAVED FROM PC VIDEO CARD

#SAVEFRAMES : TRUE

#SAVEFRAMESFILE : FRAMES_23JUL2009

IMAGES SAVED FROM AXIS BOX

#SAVEIMAGES : TRUE

#SAVEIMAGESFILE : IMAGES_24JUL2009

SOURCE = DEMO

#DEMOFRAMESFILE : FRAMES_9MAR2006

#DEMOFRAMESFILE : FRAMES_23JUL2009

#SOURCE = AXISDEMO

#DEMOIMAGESFILE : IMAGES_23JUL2009

#SOURCE = AXIS

 14

B. Implementation

This section presents the implementation of the image processing client application

AutoCalSpd. There are two main parts to the application: the image processor that performs

the calculations for calibration and speed estimation, The image processor makes use of the

Java Advanced Imaging (JAI) framework. The graphical user interface is implemented using

the Java Swing GUI toolkit. The GUI allows camera selection, parameter tuning and

visibility into the various image processing stages. There is an interactive mode of operation

in which the user supervises the calibration, and there is an automatic mode in which speed

data is continuously recorded into a file.

Graphical User Interface

The user interface is implemented using the Java Swing GUI toolkit. It consists of three

principle components: a control panel, an image display desktop panel and a camera selector

panel. A screenshot of the GUI is shown in Figure 1. However, in the case of using the

application with an Axis encoder, the present default network, the camera selection controls

do not function and the camera selection need be done asynchronously using software from

WSDOT.

When the application is launched, the default camera is the one plugged into the Axis

encoder. A (320 X 240 pixel) snapshot image of the field of view is shown in the display

panel. All calibration parameters are set at their default values and the ``try calibrate'' toggle

is set, but no calibration will be attempted until the ``load images'' button is pressed. The ``try

speed'' toggle is disabled since no image-to-highway scale factor is known yet. The user may

switch cameras, increase the image size to (640 X 480), and preview images at any time. For

calibration purposes, a camera should be selected with the following properties: The camera

should view approaching and/or receding traffic, that is, it should point downward and

along the highway rather than across it. The view should show straight highway lines in the

bottom half of the image as well as lane stripes. The view should be mostly unobstructed by

overpasses, large overhead signs, divergent lanes of traffic, etc. (This condition may be

relaxed in some cases by editing certain control parameters during the calibration process,

 15

for example moving the baseline of the ROI further up into the image, narrowing the

angular limits of the Hough transform, or increasing the height of the straightened image.)

Under these conditions a successful calibration is likely. To effect a calibration, the user

selects the image size, number of images to acquire and the frame rate, and then presses the

``load images'' button. This results in a request being sent to the Axis encoder. The response

from the server will be a sequence of time-tagged images, or frames, the first of which is

presented in a ``captured frames'' viewer in the image display desktop. The user can cycle

through the images using ``spinner'' buttons attached to the bottom of viewer. Since the ``try

calibrate'' toggle button is selected, a calibration process is attempted. The user may view

images produced at various stages of the process by pressing labeled buttons under the

desktop. This is useful for confirming the validity of a calibration or diagnosing and maybe

correcting a failure.

If the calibration fails, an error message pops up indicating where the failure occurred: either

no vanishing point was found, or no stripes were detected. The desktop may be used as a

diagnostic tool in these cases. Visibility into the image processing stages prior to the failure

point may suggest parameter changes that could lead to a successful calibration. For

example, if the vanishing point could not be found it is useful to view the ``lines'' image

which shows detected lines superimposed on the background image. If too many or too few

lines are shown, the user may edit the Hough parameters and force a reactivation of the

calibration process starting at the Hough stage. If stripes could not be found it is useful to

view the ``straightened background'' image. This may show that not enough stripes are

present, in which case the length of the straightened image may be increased and the

calibration process reactivated beginning with the straightening step. If the stripes are faint,

the stripe detection thresholds may be lowered and the calibration process reactivated

beginning with the stripe detection step.

If the calibration process is successful, a status message under the desktop indicates

“successful calibration'' and the “try speed'' toggle button is enabled. However, before

activating a speed computation, the user should view the “stripes'' image to double check

that road stripes were actually found rather than some other periodic structure such as

 16

construction barrels. (Also, if an insufficient number of image frames are collected, traffic

can appear as a periodic structure in the background.)

Selecting ``try speed'' will start a speed estimation process using default values for the

correlation threshold and the stripe period (40 feet for freeways). When this process

completes, a status message under the desktop indicates “speeds computed'' and the current

approaching and receding traffic speed estimates are displayed also just below the desktop.

If no speeds are shown, then either there is no traffic (which can verified by spinning through

the “captured frames'' viewer) or the cross correlation threshold is too high. The user can edit

this parameter and reactivate the speed computation. If the speeds appear unreasonable, then

the default stripe period may be wrong (some arterial stripes are spaced at 12 and 15 foot

intervals).

Once satisfied with the camera calibration and speed parameter settings, the user may

continue interactively to load images, and as long as “try speed'' is selected, speeds will be

computed. The automatic mode of operation may be enabled by pressing the “record'' button.

The program will repeatedly load images, compute speed reports, and append them to a file.

A test is performed on each cycle to determine if the camera calibration (scale factor and

straightening transformation) are still valid. If not, a popup alerts the user that action needs to

be taken: either select “try calibrate'' or select a new camera and start over.

Image Processor

The image processor is the heart of the AutoCalSpd application. It consists of an image

processing graph (see Figure 10) whose nodes implement the various algorithms described in

[1] and methods for manipulating the graph. In particular, the processor manages the loading

of source images and the rendering of the graph according to the controls and parameter

settings imposed by the user. The processor can be in one of two states: calibrate or

compute speed, and regulates rendering of the graph accordingly.

The image processor is implemented in Java and relies heavily on the Java Advanced

Imaging (JAI) application programming interface. The JAI provides a set of basic image

processing operators and a framework for defining and registering custom operators. Every

 17

operator stores an operation name, a ParameterBlock containing sources and parameters,

and a RenderingHints which contains image rendering hints, such as image size and format.

 18

Figure 10 Image processing graph.

 19

Programming in JAI generally involves constructing an image processing chain, or more

generally, a directed acyclic graph (DAG) whose nodes are operators. This is useful in that a

chain or DAG may be manipulated dynamically and rendered multiple times. Thus for

example the same chain of operations may be applied to different images or the parameters

of certain operations in a chain may be modified interactively. It is important to note that

image rendering adheres to the pull model, that is, a node is rendered only when there is a

request for actual pixel data.

The DAG

Figure 10 shows the basic DAG for the image processor. Operators at levels (1) - (5) are

provided with the JAI distribution, while operators at levels (6) - (10) are custom. The graph

is constructed during the initialization phase of the program. The operators are created and

linked together in top down, left to right order using default parameter settings. Once the

DAG has been constructed, the user can request the processor to load source image data or

make changes to various operator parameters.

Operators (1) and (2) taken together implement the ``background'' algorithm discussed in [1].

The image layout parameter for the “add'' operation specifies that the input data type (byte)

should be cast to type (double) so that the correct sum is computed. The parameter for the

“divide by'' operator must be set to the length of the input image list.

Operators (3) - (5) implement the algorithm for computing the gradient in polar form.

Parameters for the two “convolve'' operators are the appropriate Sobel masks for computing

the gradient components in Cartesian form. The “cmplx'' operator simply combines the two

components into a single complex image, while the “magnitude'' and “phase'' operators

compute the polar components of the gradient. The “crop'' operator (6) implements the “crop

magnitude'' algorithm described in [1]. Parameters are the bounds of the rectangular ROI and

the gradient angle threshold.

The “threshold'' operator (7) implements the “edge detect (threshold)'' algorithm described in

[1]. The threshold level is computed automatically using Otsu's method. The parameters for

this operator consist of two switches: one to enable double thresholding and one to enable

 20

non-maximal suppression (see [8]). Both of these switches are currently off. The

“hough/vp'' operator (8) implements the algorithms for computing Hough maps and the

vanishing point detection algorithm from [1]. Parameters consist of the Hough threshold,

two domain angle limits and a “no verticals'' switch. This operator is unique in that its

imagery is not used downstream. It computes the vanishing point and baseline needed by the

“straighten'' operator which is its sink.

The “straighten'' operator (9) constructs the straightening warp discussed in [1]. This depends

on the vanishing point and baseline computed above. The warp is applied to the background

image computed at level (2). Parameters are the depression angle () and the height of the

straightened image (512 or 1024). Since image data is stored in row major order and

autocorrelation is to be performed on columns, we rotate the image (90o) for ease of data

access.

The “stripes'' operator (10) implements the autocorrelation algorithm for determining the

scale factor discussed in [1]. Parameters are the upper and lower autocorrelation thresholds

for stripe detection.

Implementation Summary

The application presented provides a Graphical user interface based on the Java Swing

components. The selection of this set of components makes the GUI both portable and

capable of being easily modified by a Java programmer.

The Image Processor implements the image processing in a pipeline model of components

where half are taken from the Java Advanced Imaging framework and half are custom

components. This architecture allows individual steps in the algorithms to be modified or

replaced in a component wise structure. This allows for experimenting with a variety

components based on the information expected in the video images.

 21

 22

Conclusions and Recommendations

In this project a java based image processing application developed in previous projects has

been updated and modified for the new data sharing environment at the UW and WSDOT.

The previous project required a video digitizer connected to the WSDOT video switch port

(or at least to a fiber connected to a switch port) to capture video. The modifications made

in this project allow the application to connect to any video stream available through the

manufacturer Axis’s generic conversion box. As a result the application can be used by more

agencies and researchers and is not limited to the existing, and old, capture hardware and

software.

The component structure of the application for both the GUI and Image Processor allow for a

clear programmatic method to make substantial changes in both the look and feel as well as

the underlying algorithms while keeping the overall general framework.

The present setup for accessing WSDOT video streams is substantially more difficult to use

than in the past implementations. The ability to change the camera selected by the video

switch to be displayed on the allocated video port now requires substantial manual

intervention using custom software created at WSDOT whereas the previous backbone

allowed for software in the GUI implementation to select cameras with a mouse click. A

programmable application user interface (API) to the WSDOT custom software would vastly

improve researcher’s access to the video stream from the cameras without impacting network

security for WSDOT. For example, as a result of the new video access framework the

majority of this project was expended on interface activity rather than new algorithmic

efforts.

 23

References

[1] CCTV Technical report - Phase 3, D.J. Dailey and F.W. Cathey, Washington State
Transportation Center - TRAC/WSDOT, Final Technical Report WA-RD 633.1, 41 pages, January
2006.

[2] Automated use of Un-Calibrated CCTV Cameras as Quantitative Speed Sensors - Phase 3, D.J.
Dailey and F.W. Cathey, Washington State Transportation Center - TRAC/WSDOT, Final Research
Report WA-RD 635.1, 27 pages, January 2006.

[3] A Cross-Correlation Tracking Technique for Extracting Speed from Cameras Under Adverse
Conditions, T.N. Schoepflin and D.J. Dailey, Transportation Research Record, 1867, 36-45, 2004.

[4] Dynamic Camera Calibration of Roadside Traffic Management Cameras, T.N. Schoepflin and
D.J. Dailey, IEEE Transactions on Intelligent Transportation Systems, Vol. 4: No. 2, pp. 90-98, June
2003.

[5] Mathematical Theory of Image Straightening with Applications to Camera Calibration, F.W.
Cathey and D.J. Dailey, Proceedings of the IEEE 9th International Conference on Intelligent
Transportation Systems, Toronto, Canada, 18-20 September, 2006.

[6] A Novel Technique to Dynamically Measure Vehicle Speed using Un-calibrated Roadway
Cameras, F.W. Cathey and D.J. Dailey, Proceedings of the IEEE Intelligent Vehicles Symposium,
Las Vegas, NV, 6-8 June, 2005.

[7] One-Parameter Camera Calibration for Traffic Management Cameras, F.W. Cathey and
D.J. Dailey, Proceedings of the IEEE 7th International Conference on Intelligent
Transportation Systems, Washington, DC, 4-6 October, 2004.

[8] Sonka M., Hlavac V. and Boyle R., Image Processing, Analysis, and Machine Vision
PWS Publishing, Brooks/Cole Publishing Company, Pacific Grove, California, 1999

 24

APPENDIX I – ARTERIAL AND STATE ROUTE DEMONSTRATION

This appendix provides some visual demonstrations of the application operating on arterial

and other State Route (SR) roadways. The following roadways are used for demonstration:

US2 and Home Acres Rd

SR104 and 19th Ave NE

SR104 and Meridian Ave. N

SR161 and Military Road

SR167 and 23rd St. SW

The speed estimate, along with the standard deviation appears at the bottom center of the

imagery.

US2 and Home Acres Rd

 25

SR104 and 19th Ave NE

 26

SR104 and Meridian Ave. N

 27

SR161 and Military Road

 28

SR167 and 23rd St. SW

